Ingeénieurs & =

Gali éef'f —é’

Institut Galilée

INFO 2 :
FOURNIER Stéphane
ROUSSET Yohan

Devoir
de
Programmation
Fonctionnelle

Année 2009-2010

Devoir de Programmation Fonctionnelle | 2009/2010

Page 2

Devoir de Programmation Fonctionnelle | 2009/2010

Table des matieres

Lo INEPOTUCTION ettt be e sbe e sree s sane e 4
[l LeS COMBINGTEUIS ..ottt et s b e sreesaeesaeesane e 5
A. o YUT o [N o I ol =T o =Y - U URUE 5
B. Comment est constitué un terme combinateUr ?.....coccceviiiiiiiiniiieeeeeeee e 5

C. Les différents combINAtEUIScoii it 6

1. Le COMDBINATEUN et st 6

2. Le cOMBINATEUN K ..ottt e et 6

3. Le cOMbBINGtEUI Sttt 6

4. Le cOMDBINATEUN Bu....oieieeeee ettt sttt s san e e 6

5. Le COMDBINATEUN C..oe ettt et e s e saree s 6

[l LeS tYPES 8 HONNEESooeeeeerieeeeteiee ettt e ettt e e ettt e e e ba e e e e tbaeeeeasebeeeeeasseeaeessaeeeenreeaaan 8
A. Le type 1ambda _teIMEooi i e 8
B. [AV TN ole Y00 o] 1o F- 1 YU | RS RR 8
LY =T o T o Tot o o -SSP PPV 10
A. La fonction de compilation.........coeeeioieiiiiiee e 10

B La fonction d’abstraction.........c.coeieeiiiiiiiieeeeeee e e 11

C. La fonction d’ optimisationcceeei i 12

D La fonction d’ éValuation.........cceeiieiiiiiiiieieeeee e 13

E. Les fonctions permettant I'affichage.......cccuveeiriiei i e 15
RV T = 0 0] o] [T USRS 18
O =] Al o - Y O TP POFOTOUPURR 18

2. LE ST DASE2 . i b e re e e s e s ree e 18

3. LetESTDASE3 .. i sane e 19

A, LeTESEDASEA ...t st 20

D L EST DASES .. e s 22

6. LE tEST DASED ... eieeeiieiee e sr e s ree e 23

7. LE ST DASET e e b e e be e e s e s ree e 24

8. LE ST DASE8... . i e re e e s esree e 25

Page 3

Devoir de Programmation Fonctionnelle | 2009/2010

I. Introduction

Dans le cadre de notre formation d’ingénieur, nous sommes amenés a suivre un cours de
programmation fonctionnelle. A travers ce cours, nous abordons le A-calcul avec toutes les notions
inhérentes a ce sujet. Nous sommes alors amenés a manipuler des termes afin de les évaluer, les
simplifier, les calculer.

En outre, un terme en A-calcul peut étre traduit dans un langage proche utilisant ce qu’on
appelle des combinateurs. On entre alors dans la logique combinatoire. Ainsi, il nous a été proposé
pour ce devoir de créer un compilateur en CAML qui transforme un terme de A-calcul en code
combinateur. Ce rapport sera alors divisé en plusieurs parties afin de rendre compte de notre travail.
Nous verrons tout d’abord les différents combinateurs qui existent et que nous utilisons. Ensuite,
nous expliciterons les types de données qui nous permettent de créer nos termes. Puis, nous
donnerons le code des fonctions permettant la compilation, ainsi que les explications nécessaires a
leur compréhension. Enfin, nous terminerons par des exemples d’utilisations.

Page 4

Devoir de Programmation Fonctionnelle | 2009/2010

II. Lescombinateurs
Avant toute chose, il est important de définir pourquoi ce langage a été introduit, puis sa
composition. Ensuite nous expliciterons les différents combinateurs existants.

A. Pourquoi ce langage ?
Lorsque I'on cherche a évaluer un A-terme, il est nécessaire d’utiliser une regle d’évaluation,
appelée B-réduction. Ainsi, lorsqu’on évalue un A-terme, nous avons trois cas :

e Sice terme est une variable, son évaluation retourne cette variable ;

e Sice terme est une abstraction, la réduction renvoie |'abstraction dont le corps a été
normalisée =» soit M un A-terme : évaluation(Ax. M) = Ax. (évaluation M) ;

e Sice terme est une application, il faut dans un premier temps évaluer le terme de
gauche. Si ce dernier, une fois évalué, commence par une abstraction (typiquement :
Ax), alors il faut remplacer toutes les occurrences de x du terme évalué par la partie
droite de l'application. Or cette opération de substitution n’est pas facilement
implémentable.

L'opération de substitution nécessite en effet I'implémentation de I'a-renommage, ce qui
n‘est pas trivial. L'accumulation de ces difficultés nous a ainsi empéchés d’implémenter un
évaluateur de A-termes dans ce devoir dans le temps imparti.

B. Comment est constitué un terme combinateur ?

Ces difficultés identifiées Moses Schonfinkel et Haskell Curry ont eu l'idée de définir une
nouvelle notation afin de s’affranchir du probleme lié a I'abstraction du A-calcul : la_logique
combinatoire. Ainsi, la seule opération disponible est I'application d’un terme sur un autre. Ainsi, en
ajoutant des combinateurs (S, K, 1, etc.), ayant un comportement applicatif défini, et des variables a
I’opération d’application, on peut créer un terme dans le langage combinateur.

Ainsi, voici des exemples de termes combinateurs, avec x y et z des variables :

.9
¢« (Ix)
* Kx)y
* Sxyz

Il est a noter que le parenthésage aurait pu étre omis ici car il ne présente aucune ambiguité.
On rappelle ainsi ici que le parenthésage des termes (que ce soit dans le A-calcul ou dans le langage
combinateur), se fait de gauche a droite. Ainsi :

Sxyztuv = (((((Sx)y)2)t)y)v

Page 5

Devoir de Programmation Fonctionnelle | 2009/2010

Présentons maintenant les différents combinateurs présents dans la logique combinatoire
ainsi que leur 6-régle d’évaluation associée.

C. Les différents combinateurs
1. Le combinateur I
Le combinateur | est le combinateur identité. Il peut s’appliquer a un autre terme

combinateur.Onaalors:Ix = x.

2. Le combinateur K
Le combinateur K (parfois appelé T) est le combinateur d’annulation (aussi appelé
absorbeur). Il permet d’absorber un terme. Travaillant sur deux termes, son fonctionnement est le
suivant : Kxy = x =» y a été absorbé par K.

3. Le combinateur S
Le combinateur S représente |'opération de distribution. Ainsi, il opéere sur trois termes
combinateurs et les distribue entre eux de la fagon suivante: Sxyz = (xz) (yz).On a alors le
troisieme terme qui subit I'application du premier terme, puis du deuxiéme terme. Le résultat de
I"application (x z) s’applique ensuite au résultat de I'application (y z).

4. Le combinateur B
Ce combinateur est aussi appelé combinateur de composition. Il prend trois termes. Il
applique le deuxiéme sur le troisieme, puis le premier sur le résultat de la premiere application. On a
alors: Bfgx = f(gx).

5. Le combinateur C
Ce dernier combinateur que nous utiliserons dans notre devoir permet de permuter des
termes entre eux. Aussi appelé permutateur, ou combinateur de condition (d’ou le C), il représente
une sorte de « if ». Son comportement est défini ainsi:Cbxy = bxy. En fait, comme on a pu le
voir avec le if du A-calcul en cours, si b est T ou F (vrai ou faux, sachant que T est représentable par K
en langage combinateur), alors le C permettra de renvoyer x (si K), ouy (si F, avecFxy = y).

Ce comportement peut se vérifier ainsi :

e Sib = K, on a vu que K prend deux termes et renvoie le premier. On a
alorsCbxy = Kxy = x, ce qui représente bien le comportement du if du A-
calcul vu en cours.

Page 6

Devoir de Programmation Fonctionnelle | 2009/2010

e Sib = F, on avu ci-dessus que F prend deux termes et renvoie le second. On a
alorsCbxy = Fxy =y, ce qui représente bien le comportement « else » du
« if » vu en cours.

Nous venons d’expliciter le langage combinateur qui sera le langage de sortie de notre
compilateur. Nous allons donc maintenant expliquer les types de données CAML qui permettront
d’'implémenter des A-termes et des termes combinateurs.

Page 7

Devoir de Programmation Fonctionnelle | 2009/2010

III. Lestypes de données

Commencons par le type de données présent en entrée de notre compilateur permettant

d’implémenter des A-termes.

A. Le type lambda_terme
Ce type, dont le code sera révélé plus tard, permet d’'implémenter les A-termes. Ainsi, il

permet qu’un A-terme soit constitué soit :

e d’unevariable;
e d’une abstraction, suivie d’'un A-terme;
e d’une application d’un A-terme sur un A-terme.

Il découle de cette définition le code CAML suivant :

= V of string
| AP of lambda_terme * lambda_terme
| AB of string * lambda_terme;;

type lambda_terme

On remarque alors que ce type est récursif. En outre, le choix du type « string » pour définir
une variable a été fait dans le but de simplifier le traitement (il est simple de tester si deux chaines de
caractéres sont identiques lorsque I'on souhaite savoir si une variable est égale a une autre) et de
faciliter la lecture (V "x" permet de coder la variable x, ceci est lisible tres facilement).

On peut alors représenter des variables a I'aide du préfixe « V », des applications avec le
préfixe « AP », et des abstractions avec « AB ». Voici des exemples d’utilisations :

° X 9 V IIXII
° Axy.x 9 AB(“X", AB(lly"'V "X"))
o Axyz.(xy)z=> AB("x",AB("y", AB("z", AP(AP(V "x", V "y"),V "z"))))

Le type permettant d’'implémenter les A-termes étant définis, explicitons le type permettant
de coder dans le langage combinateur. |l représente le type de sortie de notre compilateur.

B. Le type combinateur
Ce type doit permettre a l'utilisateur d’'implémenter simplement un terme combinateur en

CAML. Ainsi, I'utilisateur doit pouvoir :

e utiliser les combinateurs de bases S, K, |, Bet C;
e utiliser des variables ou constantes ;
e appliquer un terme combinateur sur un autre terme combinateur.

On peut alors définir le type combinateur a I'aide du code CAML suivant :

Page 8

Devoir de Programmation Fonctionnelle | 2009/2010

type combinateur = S
| K
|1
|B
|C
|VS of string
| APPLIS of combinateur * combinateur;;

Comme le type précédent, celui-ci est récursif. Le choix des variables string est motivé par la
méme raison que précédemment, c’est-a-dire dans un souci de lisibilité et de praticité d’utilisation.

Grace a ce type de donnée, on peut avec le préfixe VS définir une variable ou une constante,
avec APPLIS on peut appliquer un premier combinateur sur un second. On retrouve enfin les
combinateurs de base. Leurs comportements respectifs ne seront définis que dans la fonction
d’évaluation que nous verrons plus tard dans ce document.

Page 9

Devoir de Programmation Fonctionnelle | 2009/2010

IV. Les fonctions

Maintenant, revenons au but principal de notre devoir : celui de créer un compilateur qui
permet de compiler (de transformer) un A-terme en un terme combinateur. Pour cela, nous avons
besoin de plusieurs fonctions annexes a la fonction de compilation. Chacune de ces fonctions verront
leur fonctionnement expliqué. Les choix d’implémentations seront par ailleurs explicités au
maximum afin de rendre compte du travail fourni.

Pour compiler, il est nécessaire d’avoir trois fonctions de bases. Ces fonctions sont :

. opt" : la fonction d’optimisation ;
e "3":lafonction d’abstraction d’'une variable dans un terme combinateur ;
e "comp":lafonction de compilation a proprement parler.

A. La fonction de compilation

La fonction comp permet la compilation d’un A-terme en un terme combinateur. Ainsi, cette
fonction prend un argument en entrée qui est le A-terme a traduire. Elle renvoie alors cette
traduction en langage combinateur. Cette fonction récursive peut alors rencontrer trés exactement
trois cas lors de la traduction :

¢ Sile A-terme courant a traduire est une variable, alors il suffit de traduire cette
variable directement en langage combinateur avec le préfixe « VS » ;

e Sile A-terme courant est une application, elle se traduit en langage combinateur
en elle-méme. Il faut alors propager la compilation sur les parties gauches et
droites de I'application afin d’avoir un terme combinateur valide ;

e Sile A-terme est une abstraction (Ax.M par exemple), il faut alors abstraire la
variable définie par cette abstraction (ici x) dans le terme compilé (ici M -> comp
M).

Le comportement de cette fonction étant maintenant défini, on peut en donner son code
CAML :

let rec comp e = match e with
V x -> VS X
| AP(x,y) -> APPLIS(comp x, comp y)

| AB(x,y) -> a x (comp y);;

Le type de cette fonction est : lambda_terme -> combinateur = <fun>

On remarque alors I'utilisation d’une fonction qui prend deux arguments : a. Cette fonction
est la fonction d’abstraction d’une variable (ici x), dans un code combinateur (ici fourni par la
compilation du code de y). Cette fonction sera définie plus tard dans ce document.

En outre, on remarque bien qu’une variable est traduite en elle-méme, une application est
traduite en une application identique, dont les parties gauches et droites sont les codes compilés des

Page

10

Devoir de Programmation Fonctionnelle | 2009/2010

parties gauches et droites de I'application en code A-terme. Enfin, on remarque que dans le cas de
I"abstraction, on abstrait bien la variable dans le code combinateur qui suit.

B. La fonction d’abstraction

La fonction d’abstraction a d’une variable dans un terme combinateur permet I'élimination
des abstractions (Ax par exemple) d’'un A-terme. Ainsi, la fonction d’abstraction va prendre deux
arguments en entrée. Le premier argument est la variable a abstraire. Le second argument
représente le code combinateur dans lequel on souhaite abstraire la variable. Ainsi, la fonction va
procéder a un « matching » sur le code combinateur. Elle distinguera alors plusieurs cas différents :

¢ Si le terme combinateur passé en argument est une application ((M N) par
exemple), alors on peut I'optimiser a I'aide de la fonction opt que nous définirons
dans la prochaine sous-partie. Elle prendra en argument un terme combinateur
formé ainsi :

> ((S (a x M)) a x N). On appelle donc récursivement la fonction a
sur les parties gauche a et droite de I'application, en ajoutant le
combinateur S de distribution. L’abstraction de x est ainsi
propagée au reste du code combinateur.

e Si le terme combinateur est une variable, alors il se pose a nous deux cas
différents :

0 Si la variable en question est la méme que la variable a abstraire,
I"abstraction s’effectue et la fonction a renvoie le combinateur identité | ;

0 Si la variable en question (on note cette variable y) est différente de la
variable a abstraire, alors dans ce cas il faudra renvoyer une application
formée ainsi : Ky ;

e Sinon, si aucun des « patterns » précédent n’a été reconnu, c’est que nous
somme en présence d’'un combinateur de base (S, K, I, B, C). Ainsi, il n’y a rien de
plus a faire car on ne peut pas abstraire une variable dans un combinateur de
base. On décide alors de renvoyer un terme de la forme (K, 1), avec | le terme
dans lequel I'abstraction doit se faire (typiguement un combinateur de base).

Grace a toutes ces définitions, nous pouvons alors définir le code CAML de la fonction
d’abstraction. Il est le suivant :

let rec a x 1 = match 1 with
APPLIS(f1, f2) -> opt (APPLIS(APPLIS(S, a x f1), a x f2))
|[VS 'y -> (if (x = y) then I
else APPLIS(K, VS vy))
| _ -> APPLIS(K, 1);;

Le type de cette fonction est : string -> combinateur -> combinateur = <fun>

Page

11

Devoir de Programmation Fonctionnelle | 2009/2010

Le string représente la variable a abstraire, le premier combinateur représente le code dans
lequel la variable doit étre abstraire (argument |). La fonction renvoie alors un code combinateur.

On remarque alors que tous les cas traités précédemment sont présent dans le code CAML.
Notamment le troisieme cas qui, si aucun des « matching » précédent n’a été effectué, c’est qu’il n'y
a plus de possibilité d’abstraction, donc on arréte I'abstraction courante et on renvoie le terme | tel
quel. Cela se produit si | est un combinateur de base.

C. La fonction d’optimisation

Cette fonction est appelée par la fonction d’abstraction. Elle permet dans un cas bien précis
d’optimiser le terme combinateur afin de réduire le nombre d’étapes nécessaires a I'évaluation du
terme. En effet, lorsque la fonction abstraction doit abstraire une variable dans un terme
combinateur qui est une application de deux termes, alors elle demande une optimisation de cette
application. C'est le role de la fonction opt. Ainsi, cette fonction prend des objets de la
forme: (Sp) q , avec p et q des termes combinateurs.

Cette fonction va alors procéder a un « matching » sur le terme passé en paramétre. Elle va
alors tenter d’appliquer cing régles d’optimisations qui sont les suivantes :

* Sile terme a optimiser est de la forme (S (Kp) (Kq), alors on peut appliquer la
distribution S. On peut alors appliquer Sxyz=(xz)(yz) avecx =Kp ,
y=Kgq , et pour tout terme z. On a alors la distribution (Kp)z => p
,(Kg@)z => g. Or on ne connait pas z au moment de I'appel a la fonction
d’optimisation. Donc on rajoute le combinateur K dans le terme a renvoyer afin
d’absorber le terme z lors de I'évaluation. opt renverra donc dans ce cas la:
K(p @) ;

» Sile terme a optimiser est de la forme (S (Kp) I, on commence par appliquer la
distribution S.onaalorsSxyz = (xz) (yz)avecx =Kp,y =1, et pour tout
terme z. On a alors la distribution (Kp)z => p , Iz => z. On se retrouve
alors avec un terme de la forme : pz . Or le terme z n’est pas connu au moment
de I'optimisation (z est en fait situé plus haut dans I'arbre du terme combinateur
global issu de la compilation). Donc la fonction opt renvoie dans ce cas p.

* Sile terme a optimiser est de la forme (S(Kp)q , alors on applique la
distribution issue du combinateur S. On peut alors appliquer ce qui suit:
Sxyz=(xz)(yz)avecx=Kp,y=q, et pour tout terme z. On a alors la
distribution (Kp)z => p et (qz). Or z étant inconnu a ce moment |3, on doit
utiliser le combinateur de base B afin de forcer I'application (q z) de s’effectuer
en priorité, avant de |'utiliser comme argument a p. opt doit donc renvoyer
(Bp)q

* Si le terme a optimiser est de la forme (Sp (Kq) , alors on applique la
distribution issue du combinateur S. On peut alors appliquer ce qui suit:

Page

12

Devoir de Programmation Fonctionnelle | 2009/2010

Sxyz=(xz)(yz)avecx =p,y=Kq, et pour tout terme z. On a alors la
distribution (p z) et (K q) z=> q . Comme précédemment, z est inconnu au
moment de I'évaluation. Or ici, il faut en appliquer en priorité p sur z, avant
d’appliquer ce résultat sur g. Il suffit alors d’utiliser le combinateur de base de
permutation : C. opt doit donc renvoyer (C p) q .

* Enfin, si le terme a optimiser est de la forme (Sp q), c’est qu’il n’y a aucune
optimisation applicable. La fonction opt se contente alors de renvoyer (S p)q.

Nous venons de définir le comportement de la fonction d’optimisation, donnons le code
CAML de cette fonction :

let opt e = match e with
APPLIS(APPLIS(S, APPLIS(K,p)),APPLIS(K,q)) -> APPLIS(K,APPLIS(p,q))
| APPLIS(APPLIS(S, APPLIS(K,p)),I) -> p
| APPLIS(APPLIS(S, APPLIS(K,p)),q) -> APPLIS(APPLIS(B,p),q)
| APPLIS(APPLIS(S, p),APPLIS(K,q)) -> APPLIS(APPLIS(C,p),q)
| APPLIS(APPLIS(S,p),q) -> APPLIS(APPLIS(S,p),q);;

Le type CAML de cette fonction d’optimisation est le suivant :
combinateur -> combinateur = <fun>

Néanmoins, il est a préciser que le filtrage de cette fonction n’est pas exhaustif. En effet, le
type combinateur posséde d’autres éléments, tels que les combinateurs de bases et les variables. Or
il n'est pas ici nécessaire de les inclure dans le filtrage car I'appel a opt se fait dans a. Or cette
derniere met en forme le terme combinateur a optimiser. Elle se charge ainsi de faire en sorte que le
terme envoyé a opt soit « matchable » par cette derniére.

A ce titre, il est probablement possible a notre sens d’optimiser I'utilisation de la fonction
opt. En effet, la fonction a met en forme un terme a partir d’'un combinateur de base S. Or ce
combinateur n’est pas déterminant dans le matching. On pourrait alors créer une fonction
d’optimisation qui omettrait le combinateur S (au lieu de reconnaitre des termes du type (Sp q), on
tenterait une reconnaissance des termes de la forme (p q) , en supposant que 'appel a opt n’est fait
qu’a partir de a. Cette derniere mettrait en forme un terme combinateur de la forme (p q) et non

plus (Sp q).

D. La fonction d’évaluation

Nous allons présenter dans cette partie notre fonction d’évaluation de terme combinateur.
Celle-ci devra appliquer les comportements définis pour chaque combinateur de base sur le terme
donné en paramétre. Ainsi, elle tentera de simplifier au maximum le terme, jusqu'a atteindre sa
forme normale.

Page

13

Devoir de Programmation Fonctionnelle | 2009/2010

Cette fonction récursive devra alors opérer une reconnaissance de motif sur le terme recu en

parametre :

¢ Sice terme est un combinateur de base, il est en forme normale et ne peut

étre réduit d’avantage. La fonction le renvoie tel quel ;

e Sice terme est une variable, méme constat, une variable est normale. On la

renvoie tel quel;

¢ Sile terme est une application, alors il faut travailler sur les parties gauche

et droite de cette application. Soit ces parties a et b, on procede a une

nouvelle reconnaissance de pattern sur la partie gauche (sur a donc) :

(0]

Si a est le combinateur identité, le comportement défini requiert
alors de renvoyer b ;

Si a est une application dont la partie gauche est le combinateur de
base K, alors il faut renvoyer la partie droite de a ;

Si a est une application, donc la partie gauche est une nouvelle
application dont la partie gauche est le combinateur de base S, il
faut procéder a la distribution. On est donc plus précisément dans le
cas ol a = (S x)y. Le combinateur de base B s’applique alors sur x,
y et b. La fonction va donc créer le terme ((x b)(y b)). Puis elle va
relancer I'évaluation sur ce dernier récursivement.

Si a est une application dont la partie gauche est une autre
application dont la nouvelle partie gauche est le combinateur de
base B, il faut composer les termes voisins de la bonne maniére. On
a alorsa= (B f)g. Il faut donc créer I'application composée
suivante : (f (g b)). Il suffit ensuite de rappeler la fonction
d’évaluation récursivement sur ce terme ;

Puis, si a est une application formée comme ci-dessus, sauf qu’au
lieu de retrouver un combinateur de base B, c’est un combinateur
de base C, alors il faut effectuer la permutation adéquat. Ici, en
reprenant les mémes variables que le cas précédent, on aurait donc
a appeler récursivement la fonction d’évaluation sur le terme:
((f b)g).

Enfin, si aucun des motifs précédent de a n’est reconnu, c’est que a
est en forme normale, on ne peut plus le réduire davantage. On
évalue alors la partie droite du terme qui était en entrée de la
fonction d’évaluation, c’est-a-dire b.

La fonction d’évaluation ainsi définie, il en découle le code CAML suivant :

Page

14

Devoir de Programmation Fonctionnelle | 2009/2010

let rec evaluateur t = match t with

—~ e~ e~~~ —~

S|K|I|B]|C->t(*pasdévaluation possible ici *)
| VS x->t (* idem, une variable est normale *)
| APPLIS (a, b) -> match evaluateur a with

cas identité 1) I -> evaluateur b

cas K, on absorbe b) | APPLIS (K, z) ->z

cas S, on distribue : (zb)(yb)) | APPLIS (APPLIS (S, z), y) -> evaluateur (APPLIS (APPLIS (z, b), APPLIS (y, b)))
cas B, on compose : (f(gb))) | APPLIS (APPLIS (B, f), g) -> evaluateur (APPLIS (f, APPLIS (g, b)))

cas C, on permute : ((f,b)g)) | APPLIS (APPLIS (C, f), g) -> evaluateur (APPLIS (APPLIS (f, b),g))

sinon, forme normale) | x-> APPLIS (x, evaluateur b);; (*on evalue alors b*)

On remarque alors que le type de cette fonction est :
combinateur -> combinateur = <fun>

Ce qui correspond parfaitement a nos attentes de typage.

E. Les fonctions permettant I'affichage
Nous avons décidé d’'implémenter un affichage des arbres produits. En effet, des fonctions

ont été définies afin d’afficher des arbres issues de codes combinateurs ou de A-termes.

Nous retrouvons alors deux principales fonctions qui prennent respectivement un A-terme en

parameétre, et un terme combinateur. Ces fonctions sont affichelLTerme et afficheComb.

Ces fonctions appellent deux fonctions, respectivement affichelLTermel et

afficheCombl, avec les bons arguments. Voici donc le code de ces quatre fonctions, ainsi que le

code des fonctions auxiliaire nécessaires :

e hauteurComb et hauteurLTerme qui prennent soit un terme combinateur, soit
un A-terme et rend la hauteur de I'arbre formé par ces termes ;

e max qui prend deux entier et rend le plus grand des deux ;

e afficheString qui prend une chaine de caractéres et deux entiers, et qui
affiche cette chaine sur le dessin a la position donnée par les deux entiers ;

e puissance qui prend deux entiers et qui renvoie le premier a la puissance du
second. Cette fonction est récursive. Typiquement, elle nous servira a calculer
des valeurs de puissances de deux.

Page

15

Devoir de Programmation Fonctionnelle | 2009/2010

let rec hauteurComb arbre = match arbre with

S ->0

|[K -> 0

[T -> 0

|[B -> 0

|[c -> 0

[vs _-> o

|APPLIS (a,b) -> 1+ (Max (hauteurComb a) (hauteurComb b));;

let rec hauteurLTerme arbre = match arbre with
V_->0
|AB(x,y) -> 1+(hauteurLTerme y)
|AP(a,b) -> 1+ (Max (hauteurLTerme a) (hauteurLTerme b));;

let Max x y = if (x>y) then x else y;;

let rec puissance x y = match y with
0 ->1
| ->x * (puissance x (y-1));;

let afficheString chaine x y = (moveto x y);(draw_string chaine);;

let rec afficheLTermel arbre func x y =match arbre with
V z->funczx (y-10)

| AB(z,t) -> func (("I")”z) (x) y ; moveto x (y-6) ; lineto (x) (y-(10*(puissance 2 (hauteurLTerme t)+1))-10) ;
afficheLTermel t func (x) (y-(10*(puissance 2 (hauteurLTerme t)+1))-10)

|AP(a,b) -> (func "@" x y);moveto (x-3) y;

lineto (x-(10*(puissance 2 (hauteurLTerme a)+1))) (y-(10*(puissance 2 (hauteurLTerme a)+1)));

moveto (x+6) y;lineto (x+(10*(puissance 2 (hauteurLTerme b)+1))) (y-(10*(puissance 2 (hauteurLTerme b)+1)) +10);
(afficheLTermel a func (x-(10*(puissance 2 (hauteurLTerme a)+1))) (y-(10*(puissance 2 (hauteurLTerme a)+1))));
(afficheLTermel b func (x+(10*(puissance 2 (hauteurLTerme b)+1))) (y-(10*(puissance 2 (hauteurLTerme b)+1))));;

let affichelLTerme arbre = affichelLTermel arbre afficheString 800 800;;

Page
16

Devoir de Programmation Fonctionnelle | 2009/2010

let rec afficheComb1 arbre func x y =match arbre with

S->func"S" xy
|K->func"K" xy
[I->func"I" x y
|B->func"B" xy
|C->func"C"xy
|[VSv->funcvxy
| APPLIS(a,b) -> (func "@" x y);moveto (x-3) y;
lineto (x-(10*(puissance 2 ((hauteurComb a)+1)))) (y-(10*(puissance 2 ((hauteurComb a)+1))));
moveto (x+6) y;
lineto (x+(10*(puissance 2 ((hauteurComb b)+1)))) (y-(10*(puissance 2 ((hauteurComb b)+1))));
(afficheComb1 a func (x-(10*(puissance 2 ((hauteurComb a)+1)))) (y-(10*(puissance 2 ((hauteurComb a)+1)))));
(afficheComb1 b func (x+(10*(puissance 2 ((hauteurComb b)+1)))) (y-(10*(puissance 2 ((hauteurComb b)+1)))));;

let afficheComb arbre = afficheCombl arbre afficheString 800 800;;

On décide que la racine de I'arbre soit située au point (800,800). La fonction d’affichage a

utiliser est la fonction afficheString. Cela peut étre utile de préciser la fonction d’affichage au cas ou
nous décidons de changer le mode de représentation des variables de string vers un autre type. Il
suffira alors de modifier simplement la fonction d’affichage et quelques morceaux de codes dans les

fonctions d’affichages.

On précise également le comportement des primitives de dessin : lineto et moveto. moveto

prend deux arguments (deux entiers représentant un point). Elle sert a déplacer le crayon sur la
surface de dessin, crayon levé, vers le point défini en parametre. Cela est utile pour se placer en un
point particulier afin de commencer a dessiner a partir de celui-ci. La primitive lineto se déplace du
point courant vers le point donné en parametre (par deux entiers), crayon baissé. Ainsi, elle trace

une droite jusqu'a ce point.

De plus, nous avons besoin de : #open "graphics";; open_graph"";; clear_graph();; .

Il est cependant a préciser que les fonctions d’affichages sont incompatibles avec le systéme

OCAML fourni sur les ordinateurs de I'Institut Galilée. Ainsi, ces fonctions requiérent la bibliotheque
« graphics » disponible dans le systeme CAML Light for Windows.

B

N

(]
"

w

/ \1;: /@\\I
1y 1y R/@\\E

Figure 2 : Compilationde (TT) |

Figure1:(TT)I Page

17

Devoir de Programmation Fonctionnelle | 2009/2010

V. Les exemples

Pour prouver la qualité de notre application, nous allons exposer des exemples qui nous
semblent pertinent. Nous observerons donc dans un premier temps des exemples de A-terme que
nous compilerons. Ces termes, une fois compilés en langage combinateur, nous les évaluerons a
I’aide de notre fonction d’évaluation.

Nous commencerons par compiler des termes simples afin de montrer la bonne marche du
compilateur pour les cas de bases. Nous verrons par la suite la compilation de termes plus
compliqués. Pour chaque terme compilé, nous I’évaluerons afin de montrer que la compilation s’est
bien déroulée.

1. Le test basel
Soit 'exemple suivant : Axy. (x y) codé par :

let basel = AB("x",AB("y",AP(V "x", V "y")));;

Le code combinateur sera fourni lors de I'appel let cbasel = comp basel ;;. Onaalorsle
résultat suivant :

#basel : lambda_terme = AB ("x", AB ("y", AP (V "x", V"y")))
#cbasel : combinateur = |

On a également I'arbre suivant généré par affichelTerme sur basel :

1%

ly

|

@
e
X y

Figure 3 : arbre de basel

L’arbre issu du terme compilé est I'arbre dont le seul élément est une racine valant I.

Ici, il est inutile d’évaluer I. En effet, ce terme est déja sous forme normale, I'évaluateur ne
pourra rien réduire. En outre, I est bien le résultat que I’on désirait avoir.

2. Le test base2
Soit 'exemple suivant : Axy. (x z) codé par :

let base2 = AB("x",AB("y",AP(V "x", V "2")));;

Page

18

Devoir de Programmation Fonctionnelle | 2009/2010

Le code combinateur sera fourni lors de 1’ appel let cbase2 = comp base2 ;;.

alors le résultat suivant :

#base?2 : lambda_terme = AB ("x", AB ("y", AP (V "x", V "z")))
#cbase2 : combinateur = APPLIS (APPLIS (B, K), APPLIS (APPLIS (C, 1), VS "z"))

On a également les arbres suivant pour base2 et cbase2:

4]

1x Y
A
l‘_J g K
| i
: 7
A @
b4 Z C”/ \I
Figure 4 : arbre de base2 Figure 5 : arbre de cbase2

Ona

Lorsqu’on évalue le terme combinateur avec notre évaluateur, le terme renvoyé est le méme

que le terme en entrée. En fait, le terme en entrée est en forme normale, donc il n’est pas possible

de le réduire d’avantage. Cela s’explique par le fait que le combinateur de base B n’a pas assez

d’argument lors de son appel. En effet, il lui en faut trois. Or, au moment de son évaluation, il n’a que

deux arguments (K et (C |) z), donc I'évaluation de la partie gauche échoue. Ensuite, I'évaluation

reprend sur (C 1) z. Mais pour les mémes raisons (C nécessite trois arguments, il n‘en a

malheureusement que deux), I’évaluation ne peut réduire le sous arbre. C'est pourquoi la fonction

renvoie le terme combinateur sans modification.

3. Le test base3
Soit 'exemple suivant : (Ax. (x y))z codé par:

Iet base3 - AP(AB("X", AP(V ”X",V "y")), V llzll);;

Le code combinateur sera fourni lors de 1°appel let cbase2 = comp base2 ;;. Il

vient alors le résultat suivant :

#base3 : lambda_terme = AP (AB ("x", AP (V "x", V"y")), V "z")
#cbase3 : combinateur = APPLIS (APPLIS (APPLIS (C, I), VS "y"), VS "z")

Page

19

Devoir de Programmation Fonctionnelle | 2009/2010

On a également les arbres suivant pour base3 et cbase3:

&

@
e \z
/ 2
1=
@
g Ny
A @/

B § ¢’ NI

Figure 6 : arbre de base3 Figure 7 : arbre de cbase3

La compilation est juste. En effet, on distingue bien que le terme Ax.x a été traduit en |, et
que les deux termes y et z, non lié, sont restés tels quels, et que les applications se sont traduites en
elles-mémes.

En outre, I'évaluation de C provoque dans un premier temps la permutation de y et z. Puis
I’évaluateur élimine le terme identité en I'appliquant a z. Il sort donc de I'évaluation (z y). Ce qui se
vérifie ici : combinateur = APPLIS (VS "z", VS "y").

Nous allons maintenant passer a des cas un peu plus compliqués. Vu en cours en A-termes,
leurs évaluations en A-calcul pourront étre comparées aux évaluations faites par notre évaluateur
plus tard dans ce devoir.

4. Le test base4
Avant tous, on pose dorénavant les termes suivant qui nous seront utile a partir de
maintenant.

Soit les A-termes suivant :

e t= Axy.xreprésente le « vrai» (ouT);

e [= Axy.y représente le « faux » (ou F) ;

e iF = Axyz.(x y) z représente le « ifthenelse », avecy le then, z le else, et x le test ;
e delta= Ax.(xx);

e id = Ax.x représente 'identité.

Page

20

Devoir de Programmation Fonctionnelle | 2009/2010

Maintenant que ces termes sont définis, ils nous serviront a simplifier I'écriture de certain
termes plus élaborés que nous verrons a partir de maintenant. Commencons par le terme base4.

Soit base4 = (f t)id
On a alors en CAML base4 et chase4 le code compilé de base4 :

#based : lambda_terme =

AP
(AP (AB ("X“' AB (lly"' V ||y"))' AB ("X"' AB ("yll, V IIXII)))’
AB ("X“' V IIXII))

#cbased: combinateur = APPLIS (APPLIS (APPLIS (K, 1), K), I)

Ces deux termes sont représentables par les arbres suivants :

%
& e

1x 1z @

| | g \1

ly ly

| |

v %

. Figure 9 : arbre de cbase4
Figure 8 : arbre de base4

Lorsgu’on tente I'évaluation du terme cbase4, on sent immédiatement que le terme retourné
par I'évaluateur doit étre I'identité I. En effet, le terme combinateur K | K doit renvoyer I. Puis, on se
retrouve avec une application de la forme (I 1). Ceci se réduit alors en terme combinateur .

Lorsqu’on appel I'évaluateur en lui donnant cbased4 en parametre, il nous renvoie bien
I'identité. L’évaluateur fonctionne donc pour ce cas la.

Page

21

Devoir de Programmation Fonctionnelle | 2009/2010

5. Le test base5
Soit base5 = (t t)id

On a alors en CAML base5 et cbase5 le code compilé de base5 :

#base5 : lambda_terme =

AP
(AP (AB ("x", AB ("y", V "x")), AB ("x", AB ("y", V "x"))),
AB ("x", V"x"))

#cbase5 : combinateur = APPLIS (APPLIS (K, K), 1)

On peut alors obtenir les deux arbres suivants grace a nos fonctions d’affichages :

1x €
| ik

X
R
/ @
1= \l:{ Figure 11 : arbre de chase5
| |
ly ly
| |
= x

Figure 10 : arbre de base5

On remarque alors que I'arbre compilé a la méme forme que I'arbre dont il est issu. En outre,
on remarque que les deux sous arbres de la partie gauche du A-terme, représentant le « vrai » en A-
calcul, sont représentés pas des K en langage combinateur. Cela montre la bonne fonctionnalité de
notre compilateur, puisque nous avons vu plus tot dans ce document que le K représentait le « vrai »

dans le langage combinateur.

En outre, lorsque I'évaluation de ce terme est tenté a la main, on remarque immédiatement
que (K K) I doit renvoyer K lorsqu’on applique le comportement de K (prend deux arguments,
renvoie le premier, et absorbe le second).

Page

22

Devoir de Programmation Fonctionnelle | 2009/2010

Lorsqu’on appelle I'évaluateur, ce dernier nous renvoie bien K. C'est bien le comportement
que I'on voulait avoir.

6. Le test base6
Soit base6 = ((if t)id)delta

On pressent alors que ce terme doit valoir, aprés évaluation, l'identité. En effet, le terme t
représentant le « vrai » en prenant deux arguments (ici id et delta), renverra le premier argument (ici
id).

On a alors les représentations CAML suivante :

#baseb : lambda_terme =
AP
(AP
(AP
(AB ("x", AB ("y", AB ("z", AP (AP (V "x", V"y"), V. "z")))),
AB (X", AB (*Y", V "X"))),
AB ("x", V "x")),
AB ("x", AP (V "x", V"x")))
#cbaseb : combinateur =
APPLIS (APPLIS (APPLIS (1, K),), APPLIS (APPLIS (S, 1), 1))

On a alors le terme combinateur compilé a partir de base6 suivant :

(1]

a
e

/@\1 Pt

@
17 \EK S
Figure 12 : arbre de cbase6

On cherche ensuite a évaluer ce terme. L’évaluation commence par le sous terme (I K). Ce
dernier est évalué en K. Ensuite, nous avons ((K I)((S 1) I)). Or nous rappelons que le combinateur de
base K prend deux arguments. Il absorbe ici (S 1) I. Il renvoie alors I. C'est par ailleurs ce qu’on
Page

23

Devoir de Programmation Fonctionnelle | 2009/2010

cherchait a avoir lorsqu’on évalue le A-terme (((iF t) id) delta). Le if, si t est le « vrai », alors il renvoie
le « then ». Ici le « then » est I'identité. C'est bien ce que I’évaluation du terme combinateur montre.

L'évaluateur confirme le résultat calculé a la main en renvoyant :

ecbase6 : combinateur = I

Ainsi, cela montre que la compilation a conservé le code représentant le if. Cela montre également
gue notre évaluateur fonctionne dans ce cas la.

7. Le test base7
Soit base7 = ((if f)id)delta

On pressent alors que ce terme doit valoir, aprés évaluation, le terme delta. En effet, le
terme f représentant le « faux » en prenant deux arguments (ici id et delta), renverra le second
argument (ici delta).

On a alors les représentations CAML suivante :

#base7 : lambda_terme =
AP
(AP
(AP
(AB ("x", AB ("y", AB ("Z", AP (AP (V "x", V"y"), V"z")))),
AB (X", AB ("Y", V "y")),
AB ("x", V "x")),
AB ("x", AP (V "x", V"x")))
#cbase7 : #- : combinateur =
APPLIS (APPLIS (APPLIS (I, APPLIS (K, 1)), 1), APPLIS (APPLIS (S, I), 1))

Page

24

Devoir de Programmation Fonctionnelle | 2009/2010

On a alors le terme combinateur compilé a partir de base7 suivant :

Figure 13 : arbre de cbase?

On essaye alors d’évaluer ce terme. On rappelle que notre pressentiment nous donnait
comme résultat de I'évaluation delta. Or la compilation de delta est (S) | d’aprés notre compilateur.
Ici, a 'aide de I'arbre, on peut tenter dans un premier temps une évaluation a la main. Tout d’abord,
le terme (K 1) du sous arbre gauche va chercher son deuxieme argument I. on se retrouve alors une
application (I 1). Ceci se simplifie en I. Puis, | s’applique a (S 1) I, ce qui donne (S 1) I. C'est notre delta.
Le comportement de I'ifthenelse est alors conservé. C’est bien ce qu’on voulait avoir.

Appelons maintenant notre évaluateur sur ce terme afin de vérifier que notre pressentiment
était le bon, et surtout que I'évaluation faite a la main précédemment est bonne. Notre évaluateur
nous fournit: combinateur = APPLIS (APPLIS (S, I), I). Notre évaluateur fonctionne
donc sur ce cas la.

8. Le test base8

Soit base8 = <((Ax. (Aw. (xy))) z) t)

On code alors ce terme dans le type lambda_terme construit, ce qui nous donne :

Page

25

Devoir de Programmation Fonctionnelle | 2009/2010

#base8 : lambda terme =
AP (AP (AB ("x", AB ("w", AP (V "x", V "y"))), V "z"), vV "t")

Puis, une fois compilé, nous avons cbase8 tel que :
t#tcbase8 : combinateur =
APPLIS

(APPLIS (APPLIS (APPLIS (B, K), APPLIS (APPLIS (C, I), VS "y")), VS "z"),
VS Iltll)

Ce qui provoque la création des deux arbres suivants :

Figure 14 : arbre de base8

Page

26

Devoir de Programmation Fonctionnelle | 2009/2010

.=

Nz

Figure 15 : arbre de cbase8

L’évaluation de base8 se fait dans I'ordre suivant. Dans un premier temps, il faut abstraire x
dans le sous arbre composé de Aw.(x y). Ainsi, on remplace les occurrences de x par z. On a alors
Aw.(z y). Puis, on abstrait le w, or il n’y a aucune occurrence de w. Donc le t est éliminé. Il ne reste
que l'application (z y).

On évalue alors a la main cbase8 afin de bien voir qu’on a la méme chose que I'évaluation de
base8. On commence par évalué le BK (Cly) z. On applique la composition, on a alors K (C |y z).
Puis on récupere la variable t. On a alors K (Cly z) t, le K absorbe le t, et retourne donc (Cly z). Le C
de permutation s’applique, on a alors (I z y). L'identité s’effectue. On a alors (z y). Ce qui correspond
bien a I’évaluation base8 compilé.

Page

27

Devoir de Programmation Fonctionnelle | 2009/2010

Notre évaluateur nous renvoie, quant a lui : combinateur = APPLIS (VS "z", VS "y").
C’est bien ce que nous cherchions, donc I’évaluateur est a nouveau fonctionnel sur ce cas la.

Le jeu de test est maintenant terminé, et a montré que notre compilateur donnait les bons
résultats, puisque la compilation, suivi de I’évaluation, a permis d’avoir des résultats cohérents avec
nos attentes. En outre, notre évaluateur est également bon, puisque pour chaque exemple, il
s’accordait avec nos calculs faits a la main.

Page

28

