

Institut Galilée

INFO 2 :

FOURNIER Stéphane

ROUSSET Yohan

Année 2009-2010

Devoir

de

Programmation

Fonctionnelle

Devoir de Programmation Fonctionnelle 2009/2010

Page 2

Devoir de Programmation Fonctionnelle 2009/2010

Page 3

Table des matières
I. Introduction ... 4

II. Les combinateurs .. 5

A. Pourquoi ce langage ? ... 5

B. Comment est constitué un terme combinateur ? ... 5

C. Les différents combinateurs .. 6

1. Le combinateur I .. 6

2. Le combinateur K ... 6

3. Le combinateur S ... 6

4. Le combinateur B... 6

5. Le combinateur C ... 6

III. Les types de données .. 8

A. Le type lambda_terme .. 8

B. Le type combinateur ... 8

IV. Les fonctions .. 10

A. La fonction de compilation .. 10

B. La fonction d’abstraction ... 11

C. La fonction d’optimisation .. 12

D. La fonction d’évaluation .. 13

E. Les fonctions permettant l’affichage ... 15

V. Les exemples ... 18

1. Le test base1 .. 18

2. Le test base2 .. 18

3. Le test base3 .. 19

4. Le test base4 .. 20

5. Le test base5 .. 22

6. Le test base6 .. 23

7. Le test base7 .. 24

8. Le test base8 .. 25

Devoir de Programmation Fonctionnelle 2009/2010

Page 4

I. Introduction

Dans le cadre de notre formation d’ingénieur, nous sommes amenés à suivre un cours de

programmation fonctionnelle. A travers ce cours, nous abordons le λ-calcul avec toutes les notions

inhérentes à ce sujet. Nous sommes alors amenés à manipuler des termes afin de les évaluer, les

simplifier, les calculer.

En outre, un terme en λ-calcul peut être traduit dans un langage proche utilisant ce qu’on

appelle des combinateurs. On entre alors dans la logique combinatoire. Ainsi, il nous a été proposé

pour ce devoir de créer un compilateur en CAML qui transforme un terme de λ-calcul en code

combinateur. Ce rapport sera alors divisé en plusieurs parties afin de rendre compte de notre travail.

Nous verrons tout d’abord les différents combinateurs qui existent et que nous utilisons. Ensuite,

nous expliciterons les types de données qui nous permettent de créer nos termes. Puis, nous

donnerons le code des fonctions permettant la compilation, ainsi que les explications nécessaires à

leur compréhension. Enfin, nous terminerons par des exemples d’utilisations.

Devoir de Programmation Fonctionnelle 2009/2010

Page 5

II. Les combinateurs
Avant toute chose, il est important de définir pourquoi ce langage a été introduit, puis sa

composition. Ensuite nous expliciterons les différents combinateurs existants.

A. Pourquoi ce langage ?

Lorsque l’on cherche à évaluer un λ-terme, il est nécessaire d’utiliser une règle d’évaluation,

appelée β-réduction. Ainsi, lorsqu’on évalue un λ-terme, nous avons trois cas :

• Si ce terme est une variable, son évaluation retourne cette variable ;

• Si ce terme est une abstraction, la réduction renvoie l’abstraction dont le corps a été

normalisée � soit M un λ-terme : évaluation� ��. � � = ��. �é
��
����� �� ;

• Si ce terme est une application, il faut dans un premier temps évaluer le terme de

gauche. Si ce dernier, une fois évalué, commence par une abstraction (typiquement :

λx), alors il faut remplacer toutes les occurrences de x du terme évalué par la partie

droite de l’application. Or cette opération de substitution n’est pas facilement

implémentable.

L’opération de substitution nécessite en effet l’implémentation de l’α-renommage, ce qui

n’est pas trivial. L’accumulation de ces difficultés nous a ainsi empêchés d’implémenter un

évaluateur de λ-termes dans ce devoir dans le temps imparti.

B. Comment est constitué un terme combinateur ?

Ces difficultés identifiées Moses Schönfinkel et Haskell Curry ont eu l’idée de définir une

nouvelle notation afin de s’affranchir du problème lié à l’abstraction du λ-calcul : la logique

combinatoire. Ainsi, la seule opération disponible est l’application d’un terme sur un autre. Ainsi, en

ajoutant des combinateurs (S, K, I, etc.), ayant un comportement applicatif défini, et des variables à

l’opération d’application, on peut créer un terme dans le langage combinateur.

Ainsi, voici des exemples de termes combinateurs, avec x y et z des variables :

• �x y�

• �I x�

• �K x� y
• S x y z

Il est à noter que le parenthésage aurait pu être omis ici car il ne présente aucune ambigüité.

On rappelle ainsi ici que le parenthésage des termes (que ce soit dans le λ-calcul ou dans le langage

combinateur), se fait de gauche à droite. Ainsi :

� � � � �

 = ������ ����������

Devoir de Programmation Fonctionnelle 2009/2010

Page 6

Présentons maintenant les différents combinateurs présents dans la logique combinatoire

ainsi que leur δ-règle d’évaluation associée.

C. Les différents combinateurs

1. Le combinateur I

Le combinateur I est le combinateur identité. Il peut s’appliquer à un autre terme

combinateur. On a alors : I x = x.

2. Le combinateur K

Le combinateur K (parfois appelé T) est le combinateur d’annulation (aussi appelé

absorbeur). Il permet d’absorber un terme. Travaillant sur deux termes, son fonctionnement est le

suivant : K x y = x � y a été absorbé par K.

3. Le combinateur S

Le combinateur S représente l’opération de distribution. Ainsi, il opère sur trois termes

combinateurs et les distribue entre eux de la façon suivante : S x y z = �x z� �y z�.On a alors le

troisième terme qui subit l’application du premier terme, puis du deuxième terme. Le résultat de

l’application (x z) s’applique ensuite au résultat de l’application (y z).

4. Le combinateur B

Ce combinateur est aussi appelé combinateur de composition. Il prend trois termes. Il

applique le deuxième sur le troisième, puis le premier sur le résultat de la première application. On a

alors : B f g x = f �g x�.

5. Le combinateur C

Ce dernier combinateur que nous utiliserons dans notre devoir permet de permuter des

termes entre eux. Aussi appelé permutateur, ou combinateur de condition (d’où le C), il représente

une sorte de « if ». Son comportement est défini ainsi : C b x y = b x y . En fait, comme on a pu le

voir avec le if du λ-calcul en cours, si b est T ou F (vrai ou faux, sachant que T est représentable par K

en langage combinateur), alors le C permettra de renvoyer x (si K), ou y (si F, avec F x y = y).
Ce comportement peut se vérifier ainsi :

• Si b = K, on a vu que K prend deux termes et renvoie le premier. On a

alors C b x y = K x y = x, ce qui représente bien le comportement du if du λ-

calcul vu en cours.

Devoir de Programmation Fonctionnelle 2009/2010

Page 7

• Si b = F, on a vu ci-dessus que F prend deux termes et renvoie le second. On a

alors C b x y = F x y = y, ce qui représente bien le comportement « else » du

« if » vu en cours.

Nous venons d’expliciter le langage combinateur qui sera le langage de sortie de notre

compilateur. Nous allons donc maintenant expliquer les types de données CAML qui permettront

d’implémenter des λ-termes et des termes combinateurs.

Devoir de Programmation Fonctionnelle 2009/2010

Page 8

III. Les types de données
Commençons par le type de données présent en entrée de notre compilateur permettant

d’implémenter des λ-termes.

A. Le type lambda_terme

Ce type, dont le code sera révélé plus tard, permet d’implémenter les λ-termes. Ainsi, il

permet qu’un λ-terme soit constitué soit :

• d’une variable ;

• d’une abstraction, suivie d’un λ-terme;

• d’une application d’un λ-terme sur un λ-terme.

Il découle de cette définition le code CAML suivant :

On remarque alors que ce type est récursif. En outre, le choix du type « string » pour définir

une variable a été fait dans le but de simplifier le traitement (il est simple de tester si deux chaines de

caractères sont identiques lorsque l’on souhaite savoir si une variable est égale à une autre) et de

faciliter la lecture (V "x" permet de coder la variable x, ceci est lisible très facilement).

On peut alors représenter des variables à l’aide du préfixe « V », des applications avec le

préfixe « AP », et des abstractions avec « AB ». Voici des exemples d’utilisations :

• x � V "x"

• λxy.x � AB("x", AB("y",V "x"))

• λxyz.(x y) z � AB("x",AB("y", AB("z", AP(AP(V "x", V "y"),V "z"))))

Le type permettant d’implémenter les λ-termes étant définis, explicitons le type permettant

de coder dans le langage combinateur. Il représente le type de sortie de notre compilateur.

B. Le type combinateur

Ce type doit permettre à l’utilisateur d’implémenter simplement un terme combinateur en

CAML. Ainsi, l’utilisateur doit pouvoir :

• utiliser les combinateurs de bases S, K, I, B et C ;

• utiliser des variables ou constantes ;

• appliquer un terme combinateur sur un autre terme combinateur.

On peut alors définir le type combinateur à l’aide du code CAML suivant :

type lambda_terme = V of string
 | AP of lambda_terme * lambda_terme
 | AB of string * lambda_terme;;

Devoir de Programmation Fonctionnelle 2009/2010

Page 9

Comme le type précédent, celui-ci est récursif. Le choix des variables string est motivé par la

même raison que précédemment, c’est-à-dire dans un souci de lisibilité et de praticité d’utilisation.

Grâce à ce type de donnée, on peut avec le préfixe VS définir une variable ou une constante,

avec APPLIS on peut appliquer un premier combinateur sur un second. On retrouve enfin les

combinateurs de base. Leurs comportements respectifs ne seront définis que dans la fonction

d’évaluation que nous verrons plus tard dans ce document.

type combinateur = S
 |K
 |I
 |B
 |C
 |VS of string
 |APPLIS of combinateur * combinateur;;

Devoir de Programmation Fonctionnelle 2009/2010

 Page
10

let rec comp e = match e with
 V x -> VS x
 | AP(x,y) -> APPLIS(comp x, comp y)
 | AB(x,y) -> a x (comp y);;

IV. Les fonctions
Maintenant, revenons au but principal de notre devoir : celui de créer un compilateur qui

permet de compiler (de transformer) un λ-terme en un terme combinateur. Pour cela, nous avons

besoin de plusieurs fonctions annexes à la fonction de compilation. Chacune de ces fonctions verront

leur fonctionnement expliqué. Les choix d’implémentations seront par ailleurs explicités au

maximum afin de rendre compte du travail fourni.

Pour compiler, il est nécessaire d’avoir trois fonctions de bases. Ces fonctions sont :

• "opt" : la fonction d’optimisation ;

• "a" : la fonction d’abstraction d’une variable dans un terme combinateur ;

• "comp" : la fonction de compilation à proprement parler.

A. La fonction de compilation

La fonction comp permet la compilation d’un λ-terme en un terme combinateur. Ainsi, cette

fonction prend un argument en entrée qui est le λ-terme à traduire. Elle renvoie alors cette

traduction en langage combinateur. Cette fonction récursive peut alors rencontrer très exactement

trois cas lors de la traduction :

• Si le λ-terme courant à traduire est une variable, alors il suffit de traduire cette

variable directement en langage combinateur avec le préfixe « VS » ;

• Si le λ-terme courant est une application, elle se traduit en langage combinateur

en elle-même. Il faut alors propager la compilation sur les parties gauches et

droites de l’application afin d’avoir un terme combinateur valide ;

• Si le λ-terme est une abstraction (λx.M par exemple), il faut alors abstraire la

variable définie par cette abstraction (ici x) dans le terme compilé (ici M -> comp

M).

Le comportement de cette fonction étant maintenant défini, on peut en donner son code

CAML :

Le type de cette fonction est : lambda_terme -> combinateur = <fun>

On remarque alors l’utilisation d’une fonction qui prend deux arguments : a. Cette fonction

est la fonction d’abstraction d’une variable (ici x), dans un code combinateur (ici fourni par la

compilation du code de y). Cette fonction sera définie plus tard dans ce document.

En outre, on remarque bien qu’une variable est traduite en elle-même, une application est

traduite en une application identique, dont les parties gauches et droites sont les codes compilés des

Devoir de Programmation Fonctionnelle 2009/2010

 Page
11

let rec a x l = match l with
 APPLIS(f1, f2) -> opt (APPLIS(APPLIS(S, a x f1), a x f2))
 |VS y -> (if (x = y) then I
 else APPLIS(K, VS y))
 | _ -> APPLIS(K, l);;

parties gauches et droites de l’application en code λ-terme. Enfin, on remarque que dans le cas de

l’abstraction, on abstrait bien la variable dans le code combinateur qui suit.

B. La fonction d’abstraction

La fonction d’abstraction a d’une variable dans un terme combinateur permet l’élimination

des abstractions (λx par exemple) d’un λ-terme. Ainsi, la fonction d’abstraction va prendre deux

arguments en entrée. Le premier argument est la variable à abstraire. Le second argument

représente le code combinateur dans lequel on souhaite abstraire la variable. Ainsi, la fonction va

procéder à un « matching » sur le code combinateur. Elle distinguera alors plusieurs cas différents :

• Si le terme combinateur passé en argument est une application ((M N) par

exemple), alors on peut l’optimiser à l’aide de la fonction opt que nous définirons

dans la prochaine sous-partie. Elle prendra en argument un terme combinateur

formé ainsi :

� ((S (a x M)) a x N). On appelle donc récursivement la fonction a

sur les parties gauche à et droite de l’application, en ajoutant le

combinateur S de distribution. L’abstraction de x est ainsi

propagée au reste du code combinateur.

• Si le terme combinateur est une variable, alors il se pose à nous deux cas

différents :

o Si la variable en question est la même que la variable à abstraire,

l’abstraction s’effectue et la fonction a renvoie le combinateur identité I ;

o Si la variable en question (on note cette variable y) est différente de la

variable à abstraire, alors dans ce cas il faudra renvoyer une application

formée ainsi : K y ;

• Sinon, si aucun des « patterns » précédent n’a été reconnu, c’est que nous

somme en présence d’un combinateur de base (S, K, I, B, C). Ainsi, il n’y a rien de

plus à faire car on ne peut pas abstraire une variable dans un combinateur de

base. On décide alors de renvoyer un terme de la forme (K, l), avec l le terme

dans lequel l’abstraction doit se faire (typiquement un combinateur de base).

Grace à toutes ces définitions, nous pouvons alors définir le code CAML de la fonction

d’abstraction. Il est le suivant :

Le type de cette fonction est : string -> combinateur -> combinateur = <fun>

Devoir de Programmation Fonctionnelle 2009/2010

 Page
12

Le string représente la variable à abstraire, le premier combinateur représente le code dans

lequel la variable doit être abstraire (argument l). La fonction renvoie alors un code combinateur.

On remarque alors que tous les cas traités précédemment sont présent dans le code CAML.

Notamment le troisième cas qui, si aucun des « matching » précédent n’a été effectué, c’est qu’il n’y

a plus de possibilité d’abstraction, donc on arrête l’abstraction courante et on renvoie le terme l tel

quel. Cela se produit si l est un combinateur de base.

C. La fonction d’optimisation

Cette fonction est appelée par la fonction d’abstraction. Elle permet dans un cas bien précis

d’optimiser le terme combinateur afin de réduire le nombre d’étapes nécessaires à l’évaluation du

terme. En effet, lorsque la fonction abstraction doit abstraire une variable dans un terme

combinateur qui est une application de deux termes, alors elle demande une optimisation de cette

application. C’est le rôle de la fonction opt. Ainsi, cette fonction prend des objets de la

forme : �S p� q , avec p et q des termes combinateurs.

Cette fonction va alors procéder à un « matching » sur le terme passé en paramètre. Elle va

alors tenter d’appliquer cinq règles d’optimisations qui sont les suivantes :

• Si le terme à optimiser est de la forme �S �K p� �K q� , alors on peut appliquer la

distribution S. On peut alors appliquer � � � � = �� �� �� �� avec � = # $,

� = # % , et pour tout terme z. On a alors la distribution �K p� z => $
, �K q� z => %. Or on ne connait pas z au moment de l’appel à la fonction

d’optimisation. Donc on rajoute le combinateur K dans le terme à renvoyer afin

d’absorber le terme z lors de l’évaluation. opt renverra donc dans ce cas là :

K�$ %� ;

• Si le terme à optimiser est de la forme �S �K p� I , on commence par appliquer la

distribution S. on a alors � � � � = �� �� �� �� avec � = # $, � = ' , et pour tout

terme z. On a alors la distribution �K p�z => $, I z => z . On se retrouve

alors avec un terme de la forme : p z . Or le terme z n’est pas connu au moment

de l’optimisation (z est en fait situé plus haut dans l’arbre du terme combinateur

global issu de la compilation). Donc la fonction opt renvoie dans ce cas p.

• Si le terme à optimiser est de la forme �S �K p� q , alors on applique la

distribution issue du combinateur S. On peut alors appliquer ce qui suit :

� � � � = �� �� �� �� avec � = # $, � = % , et pour tout terme z. On a alors la

distribution �K p� z => $ et (q z� . Or z étant inconnu à ce moment là, on doit

utiliser le combinateur de base B afin de forcer l’application �% �� de s’effectuer

en priorité, avant de l’utiliser comme argument à p. opt doit donc renvoyer

�($� %

• Si le terme à optimiser est de la forme �S p �K q� , alors on applique la

distribution issue du combinateur S. On peut alors appliquer ce qui suit :

Devoir de Programmation Fonctionnelle 2009/2010

 Page
13

� � � � = �� �� �� �� avec � = $, � = # % , et pour tout terme z. On a alors la

distribution �p z� et �# %� � => % . Comme précédemment, z est inconnu au

moment de l’évaluation. Or ici, il faut en appliquer en priorité p sur z, avant

d’appliquer ce résultat sur q. Il suffit alors d’utiliser le combinateur de base de

permutation : C. opt doit donc renvoyer �) $� % .

• Enfin, si le terme à optimiser est de la forme �S p q�, c’est qu’il n’y a aucune

optimisation applicable. La fonction opt se contente alors de renvoyer �S p�q.

Nous venons de définir le comportement de la fonction d’optimisation, donnons le code

CAML de cette fonction :

Le type CAML de cette fonction d’optimisation est le suivant :

combinateur -> combinateur = <fun>

Néanmoins, il est à préciser que le filtrage de cette fonction n’est pas exhaustif. En effet, le

type combinateur possède d’autres éléments, tels que les combinateurs de bases et les variables. Or

il n’est pas ici nécessaire de les inclure dans le filtrage car l’appel à opt se fait dans a. Or cette

dernière met en forme le terme combinateur à optimiser. Elle se charge ainsi de faire en sorte que le

terme envoyé à opt soit « matchable » par cette dernière.

A ce titre, il est probablement possible à notre sens d’optimiser l’utilisation de la fonction

opt. En effet, la fonction a met en forme un terme à partir d’un combinateur de base S. Or ce

combinateur n’est pas déterminant dans le matching. On pourrait alors créer une fonction

d’optimisation qui omettrait le combinateur S (au lieu de reconnaitre des termes du type �S p q�, on

tenterait une reconnaissance des termes de la forme �p q� , en supposant que l’appel à opt n’est fait

qu’à partir de a. Cette dernière mettrait en forme un terme combinateur de la forme �p q� et non

plus �S p q�.

D. La fonction d’évaluation

Nous allons présenter dans cette partie notre fonction d’évaluation de terme combinateur.

Celle-ci devra appliquer les comportements définis pour chaque combinateur de base sur le terme

donné en paramètre. Ainsi, elle tentera de simplifier au maximum le terme, jusqu'à atteindre sa

forme normale.

let opt e = match e with
 APPLIS(APPLIS(S, APPLIS(K,p)),APPLIS(K,q)) -> APPLIS(K,APPLIS(p,q))
 |APPLIS(APPLIS(S, APPLIS(K,p)),I) -> p
 |APPLIS(APPLIS(S, APPLIS(K,p)),q) -> APPLIS(APPLIS(B,p),q)
 |APPLIS(APPLIS(S, p),APPLIS(K,q)) -> APPLIS(APPLIS(C,p),q)
 |APPLIS(APPLIS(S,p),q) -> APPLIS(APPLIS(S,p),q);;

Devoir de Programmation Fonctionnelle 2009/2010

 Page
14

Cette fonction récursive devra alors opérer une reconnaissance de motif sur le terme reçu en

paramètre :

• Si ce terme est un combinateur de base, il est en forme normale et ne peut

être réduit d’avantage. La fonction le renvoie tel quel ;

• Si ce terme est une variable, même constat, une variable est normale. On la

renvoie tel quel ;

• Si le terme est une application, alors il faut travailler sur les parties gauche

et droite de cette application. Soit ces parties a et b, on procède à une

nouvelle reconnaissance de pattern sur la partie gauche (sur a donc) :

o Si a est le combinateur identité, le comportement défini requiert

alors de renvoyer b ;

o Si a est une application dont la partie gauche est le combinateur de

base K, alors il faut renvoyer la partie droite de a ;

o Si a est une application, donc la partie gauche est une nouvelle

application dont la partie gauche est le combinateur de base S, il

faut procéder à la distribution. On est donc plus précisément dans le

cas où � = �� ���. Le combinateur de base B s’applique alors sur x,

y et b. La fonction va donc créer le terme *�� +��� +�,. Puis elle va

relancer l’évaluation sur ce dernier récursivement.

o Si a est une application dont la partie gauche est une autre

application dont la nouvelle partie gauche est le combinateur de

base B, il faut composer les termes voisins de la bonne manière. On

a alors � = �(-�.. Il faut donc créer l’application composée

suivante : �- �. +��. Il suffit ensuite de rappeler la fonction

d’évaluation récursivement sur ce terme ;

o Puis, si a est une application formée comme ci-dessus, sauf qu’au

lieu de retrouver un combinateur de base B, c’est un combinateur

de base C, alors il faut effectuer la permutation adéquat. Ici, en

reprenant les mêmes variables que le cas précédent, on aurait donc

à appeler récursivement la fonction d’évaluation sur le terme :

*�- +�.,.

o Enfin, si aucun des motifs précédent de a n’est reconnu, c’est que a

est en forme normale, on ne peut plus le réduire davantage. On

évalue alors la partie droite du terme qui était en entrée de la

fonction d’évaluation, c’est-à-dire b.

La fonction d’évaluation ainsi définie, il en découle le code CAML suivant :

Devoir de Programmation Fonctionnelle 2009/2010

 Page
15

On remarque alors que le type de cette fonction est :

combinateur -> combinateur = <fun>

Ce qui correspond parfaitement à nos attentes de typage.

E. Les fonctions permettant l’affichage

Nous avons décidé d’implémenter un affichage des arbres produits. En effet, des fonctions

ont été définies afin d’afficher des arbres issues de codes combinateurs ou de λ-termes.

Nous retrouvons alors deux principales fonctions qui prennent respectivement un λ-terme en

paramètre, et un terme combinateur. Ces fonctions sont afficheLTerme et afficheComb.

Ces fonctions appellent deux fonctions, respectivement afficheLTerme1 et

afficheComb1, avec les bons arguments. Voici donc le code de ces quatre fonctions, ainsi que le

code des fonctions auxiliaire nécessaires :

• hauteurComb et hauteurLTerme qui prennent soit un terme combinateur, soit

un λ-terme et rend la hauteur de l’arbre formé par ces termes ;

• max qui prend deux entier et rend le plus grand des deux ;

• afficheString qui prend une chaine de caractères et deux entiers, et qui

affiche cette chaine sur le dessin à la position donnée par les deux entiers ;

• puissance qui prend deux entiers et qui renvoie le premier à la puissance du

second. Cette fonction est récursive. Typiquement, elle nous servira à calculer

des valeurs de puissances de deux.

let rec evaluateur t = match t with

 S | K | I | B | C-> t (* pas d’évaluation possible ici *)

 | VS x -> t (* idem, une variable est normale *)

 | APPLIS (a, b) -> match evaluateur a with

 (*cas identité I*) I -> evaluateur b

 (*cas K, on absorbe b*) | APPLIS (K, z) -> z

 (*cas S, on distribue : (zb)(yb)*) | APPLIS (APPLIS (S, z), y) -> evaluateur (APPLIS (APPLIS (z, b), APPLIS (y, b)))

 (*cas B, on compose : (f(gb))*) | APPLIS (APPLIS (B, f), g) -> evaluateur (APPLIS (f, APPLIS (g, b)))

 (*cas C, on permute : ((f,b)g)*) | APPLIS (APPLIS (C, f), g) -> evaluateur (APPLIS (APPLIS (f, b),g))

 (*sinon, forme normale*) | x -> APPLIS (x, evaluateur b);; (*on evalue alors b*)

Devoir de Programmation Fonctionnelle 2009/2010

 Page
16

let rec hauteurComb arbre = match arbre with
 S -> 0
 |K -> 0
 |I -> 0
 |B -> 0
 |C -> 0
 |VS _ -> 0
 |APPLIS (a,b) -> 1+ (Max (hauteurComb a) (hauteurComb b));;

let afficheLTerme arbre = afficheLTerme1 arbre afficheString 800 800;;

let Max x y = if (x>y) then x else y;;

let rec afficheLTerme1 arbre func x y =match arbre with

 V z -> func z x (y-10)

|AB(z,t) -> func (("l")^z) (x) y ; moveto x (y-6) ; lineto (x) (y-(10*(puissance 2 (hauteurLTerme t)+1))-10) ;

afficheLTerme1 t func (x) (y-(10*(puissance 2 (hauteurLTerme t)+1))-10)

|AP(a,b) -> (func "@" x y);moveto (x-3) y;

lineto (x-(10*(puissance 2 (hauteurLTerme a)+1))) (y-(10*(puissance 2 (hauteurLTerme a)+1)));

 moveto (x+6) y;lineto (x+(10*(puissance 2 (hauteurLTerme b)+1))) (y-(10*(puissance 2 (hauteurLTerme b)+1)) +10);

 (afficheLTerme1 a func (x-(10*(puissance 2 (hauteurLTerme a)+1))) (y-(10*(puissance 2 (hauteurLTerme a)+1))));

 (afficheLTerme1 b func (x+(10*(puissance 2 (hauteurLTerme b)+1))) (y-(10*(puissance 2 (hauteurLTerme b)+1))));;

let afficheString chaine x y = (moveto x y);(draw_string chaine);;

let rec hauteurLTerme arbre = match arbre with
 V _ -> 0
 |AB(x,y) -> 1+(hauteurLTerme y)
 |AP(a,b) -> 1+ (Max (hauteurLTerme a) (hauteurLTerme b));;

let rec puissance x y = match y with
 0 -> 1
 |_ ->x * (puissance x (y-1));;

Devoir de Programmation Fonctionnelle 2009/2010

 Page
17

On décide que la racine de l’arbre soit située au point (800,800). La fonction d’affichage à

utiliser est la fonction afficheString. Cela peut être utile de préciser la fonction d’affichage au cas où

nous décidons de changer le mode de représentation des variables de string vers un autre type. Il

suffira alors de modifier simplement la fonction d’affichage et quelques morceaux de codes dans les

fonctions d’affichages.

On précise également le comportement des primitives de dessin : lineto et moveto. moveto

prend deux arguments (deux entiers représentant un point). Elle sert à déplacer le crayon sur la

surface de dessin, crayon levé, vers le point défini en paramètre. Cela est utile pour se placer en un

point particulier afin de commencer à dessiner à partir de celui-ci. La primitive lineto se déplace du

point courant vers le point donné en paramètre (par deux entiers), crayon baissé. Ainsi, elle trace

une droite jusqu'à ce point.

De plus, nous avons besoin de : #open "graphics";; open_graph "";; clear_graph ();; .

Il est cependant à préciser que les fonctions d’affichages sont incompatibles avec le système

OCAML fourni sur les ordinateurs de l’Institut Galilée. Ainsi, ces fonctions requièrent la bibliothèque

« graphics » disponible dans le système CAML Light for Windows.

let rec afficheComb1 arbre func x y =match arbre with

 S -> func "S" x y

 |K -> func "K" x y

 |I -> func "I" x y

 |B -> func "B" x y

 |C -> func "C" x y

 |VS v -> func v x y

 |APPLIS(a,b) -> (func "@" x y);moveto (x-3) y;

lineto (x-(10*(puissance 2 ((hauteurComb a)+1)))) (y-(10*(puissance 2 ((hauteurComb a)+1))));

 moveto (x+6) y;

lineto (x+(10*(puissance 2 ((hauteurComb b)+1)))) (y-(10*(puissance 2 ((hauteurComb b)+1))));

 (afficheComb1 a func (x-(10*(puissance 2 ((hauteurComb a)+1)))) (y-(10*(puissance 2 ((hauteurComb a)+1)))));

 (afficheComb1 b func (x+(10*(puissance 2 ((hauteurComb b)+1)))) (y-(10*(puissance 2 ((hauteurComb b)+1)))));;

let afficheComb arbre = afficheComb1 arbre afficheString 800 800;;

Figure 1 : (T T) I

Figure 2 : Compilation de (T T) I

Devoir de Programmation Fonctionnelle 2009/2010

 Page
18

V. Les exemples

Pour prouver la qualité de notre application, nous allons exposer des exemples qui nous

semblent pertinent. Nous observerons donc dans un premier temps des exemples de λ-terme que

nous compilerons. Ces termes, une fois compilés en langage combinateur, nous les évaluerons à

l’aide de notre fonction d’évaluation.

Nous commencerons par compiler des termes simples afin de montrer la bonne marche du

compilateur pour les cas de bases. Nous verrons par la suite la compilation de termes plus

compliqués. Pour chaque terme compilé, nous l’évaluerons afin de montrer que la compilation s’est

bien déroulée.

1. Le test base1

Soit l’exemple suivant : ���. �� �� codé par :

Le code combinateur sera fourni lors de l’appel let cbase1 = comp base1 ;;. On a alors le

résultat suivant :

#base1 : lambda_terme = AB ("x", AB ("y", AP (V "x", V "y")))

#cbase1 : combinateur = I

On a également l’arbre suivant généré par afficheLTerme sur base1 :

L’arbre issu du terme compilé est l’arbre dont le seul élément est une racine valant I.

Ici, il est inutile d’évaluer I. En effet, ce terme est déjà sous forme normale, l’évaluateur ne

pourra rien réduire. En outre, I est bien le résultat que l’on désirait avoir.

2. Le test base2

Soit l’exemple suivant : ���. �� �� codé par :

let base1 = AB("x",AB("y",AP(V "x", V "y")));;

let base2 = AB("x",AB("y",AP(V "x", V "z")));;

Figure 3 : arbre de base1

Devoir de Programmation Fonctionnelle 2009/2010

 Page
19

Le code combinateur sera fourni lors de l’appel let cbase2 = comp base2 ;;. On a

alors le résultat suivant :

#base2 : lambda_terme = AB ("x", AB ("y", AP (V "x", V "z")))

#cbase2 : combinateur = APPLIS (APPLIS (B, K), APPLIS (APPLIS (C, I), VS "z"))

On a également les arbres suivant pour base2 et cbase2:

Lorsqu’on évalue le terme combinateur avec notre évaluateur, le terme renvoyé est le même

que le terme en entrée. En fait, le terme en entrée est en forme normale, donc il n’est pas possible

de le réduire d’avantage. Cela s’explique par le fait que le combinateur de base B n’a pas assez

d’argument lors de son appel. En effet, il lui en faut trois. Or, au moment de son évaluation, il n’a que

deux arguments (K et (C I) z), donc l’évaluation de la partie gauche échoue. Ensuite, l’évaluation

reprend sur (C I) z. Mais pour les mêmes raisons (C nécessite trois arguments, il n’en a

malheureusement que deux), l’évaluation ne peut réduire le sous arbre. C’est pourquoi la fonction

renvoie le terme combinateur sans modification.

3. Le test base3

Soit l’exemple suivant : *��. �� ��,� codé par :

Le code combinateur sera fourni lors de l’appel let cbase2 = comp base2 ;;. Il

vient alors le résultat suivant :

#base3 : lambda_terme = AP (AB ("x", AP (V "x", V "y")), V "z")

#cbase3 : combinateur = APPLIS (APPLIS (APPLIS (C, I), VS "y"), VS "z")

Figure 4 : arbre de base2 Figure 5 : arbre de cbase2

let base3 = AP(AB("x", AP(V "x",V "y")), V "z");;

Devoir de Programmation Fonctionnelle 2009/2010

 Page
20

On a également les arbres suivant pour base3 et cbase3:

La compilation est juste. En effet, on distingue bien que le terme λx.x a été traduit en I, et

que les deux termes y et z, non lié, sont restés tels quels, et que les applications se sont traduites en

elles-mêmes.

En outre, l’évaluation de C provoque dans un premier temps la permutation de y et z. Puis

l’évaluateur élimine le terme identité en l’appliquant à z. Il sort donc de l’évaluation (z y). Ce qui se

vérifie ici : combinateur = APPLIS (VS "z", VS "y").

Nous allons maintenant passer à des cas un peu plus compliqués. Vu en cours en λ-termes,

leurs évaluations en λ-calcul pourront être comparées aux évaluations faites par notre évaluateur

plus tard dans ce devoir.

4. Le test base4

Avant tous, on pose dorénavant les termes suivant qui nous seront utile à partir de

maintenant.

Soit les λ-termes suivant :

• � = ���. � représente le « vrai » (ou T) ;

• - = ���. � représente le « faux » (ou F) ;

• �/ = ����. �� �� � représente le « ifthenelse », avec y le then, z le else, et x le test ;

• 01��� = ��. �� �� ;

• �0 = ��. � représente l’identité.

Figure 6 : arbre de base3 Figure 7 : arbre de cbase3

Devoir de Programmation Fonctionnelle 2009/2010

 Page
21

Maintenant que ces termes sont définis, ils nous serviront à simplifier l’écriture de certain

termes plus élaborés que nous verrons à partir de maintenant. Commençons par le terme base4.

Soit +�214 = �- ���0

On a alors en CAML base4 et cbase4 le code compilé de base4 :

#base4 : lambda_terme =

 AP

 (AP (AB ("x", AB ("y", V "y")), AB ("x", AB ("y", V "x"))),

 AB ("x", V "x"))

#cbase4: combinateur = APPLIS (APPLIS (APPLIS (K, I), K), I)

Ces deux termes sont représentables par les arbres suivants :

Lorsqu’on tente l’évaluation du terme cbase4, on sent immédiatement que le terme retourné

par l’évaluateur doit être l’identité I. En effet, le terme combinateur K I K doit renvoyer I. Puis, on se

retrouve avec une application de la forme (I I). Ceci se réduit alors en terme combinateur I.

Lorsqu’on appel l’évaluateur en lui donnant cbase4 en paramètre, il nous renvoie bien

l’identité. L’évaluateur fonctionne donc pour ce cas là.

Figure 8 : arbre de base4
Figure 9 : arbre de cbase4

Devoir de Programmation Fonctionnelle 2009/2010

 Page
22

5. Le test base5

Soit +�215 = �� ���0

On a alors en CAML base5 et cbase5 le code compilé de base5 :

#base5 : lambda_terme =

 AP

 (AP (AB ("x", AB ("y", V "x")), AB ("x", AB ("y", V "x"))),

 AB ("x", V "x"))

#cbase5 : combinateur = APPLIS (APPLIS (K, K), I)

On peut alors obtenir les deux arbres suivants grâce à nos fonctions d’affichages :

On remarque alors que l’arbre compilé à la même forme que l’arbre dont il est issu. En outre,

on remarque que les deux sous arbres de la partie gauche du λ-terme, représentant le « vrai » en λ-

calcul, sont représentés pas des K en langage combinateur. Cela montre la bonne fonctionnalité de

notre compilateur, puisque nous avons vu plus tôt dans ce document que le K représentait le « vrai »

dans le langage combinateur.

En outre, lorsque l’évaluation de ce terme est tenté à la main, on remarque immédiatement

que (K K) I doit renvoyer K lorsqu’on applique le comportement de K (prend deux arguments,

renvoie le premier, et absorbe le second).

Figure 10 : arbre de base5

Figure 11 : arbre de cbase5

Devoir de Programmation Fonctionnelle 2009/2010

 Page
23

Lorsqu’on appelle l’évaluateur, ce dernier nous renvoie bien K. C’est bien le comportement

que l’on voulait avoir.

6. Le test base6

Soit +�216 = ���- ���0�01���

On pressent alors que ce terme doit valoir, après évaluation, l’identité. En effet, le terme t

représentant le « vrai » en prenant deux arguments (ici id et delta), renverra le premier argument (ici

id).

On a alors les représentations CAML suivante :

#base6 : lambda_terme =

 AP

 (AP

 (AP

 (AB ("x", AB ("y", AB ("z", AP (AP (V "x", V "y"), V "z")))),

 AB ("x", AB ("y", V "x"))),

 AB ("x", V "x")),

 AB ("x", AP (V "x", V "x")))

#cbase6 : combinateur =

 APPLIS (APPLIS (APPLIS (I, K), I), APPLIS (APPLIS (S, I), I))

On a alors le terme combinateur compilé à partir de base6 suivant :

On cherche ensuite à évaluer ce terme. L’évaluation commence par le sous terme (I K). Ce

dernier est évalué en K. Ensuite, nous avons ((K I)((S I) I)). Or nous rappelons que le combinateur de

base K prend deux arguments. Il absorbe ici (S I) I. Il renvoie alors I. C’est par ailleurs ce qu’on

Figure 12 : arbre de cbase6

Devoir de Programmation Fonctionnelle 2009/2010

 Page
24

cherchait à avoir lorsqu’on évalue le λ-terme (((iF t) id) delta). Le if, si t est le « vrai », alors il renvoie

le « then ». Ici le « then » est l’identité. C’est bien ce que l’évaluation du terme combinateur montre.

L’évaluateur confirme le résultat calculé à la main en renvoyant :

ecbase6 : combinateur = I

Ainsi, cela montre que la compilation a conservé le code représentant le if. Cela montre également

que notre évaluateur fonctionne dans ce cas la.

7. Le test base7

Soit +�217 = ���- -��0�01���

On pressent alors que ce terme doit valoir, après évaluation, le terme delta. En effet, le

terme f représentant le « faux » en prenant deux arguments (ici id et delta), renverra le second

argument (ici delta).

On a alors les représentations CAML suivante :

#base7 : lambda_terme =

 AP

 (AP

 (AP

 (AB ("x", AB ("y", AB ("z", AP (AP (V "x", V "y"), V "z")))),

 AB ("x", AB ("y", V "y"))),

 AB ("x", V "x")),

 AB ("x", AP (V "x", V "x")))

#cbase7 : #- : combinateur =

 APPLIS (APPLIS (APPLIS (I, APPLIS (K, I)), I), APPLIS (APPLIS (S, I), I))

Devoir de Programmation Fonctionnelle 2009/2010

 Page
25

On a alors le terme combinateur compilé à partir de base7 suivant :

On essaye alors d’évaluer ce terme. On rappelle que notre pressentiment nous donnait

comme résultat de l’évaluation delta. Or la compilation de delta est (S I) I d’après notre compilateur.

Ici, à l’aide de l’arbre, on peut tenter dans un premier temps une évaluation à la main. Tout d’abord,

le terme (K I) du sous arbre gauche va chercher son deuxième argument I. on se retrouve alors une

application (I I). Ceci se simplifie en I. Puis, I s’applique à (S I) I, ce qui donne (S I) I. C’est notre delta.

Le comportement de l’ifthenelse est alors conservé. C’est bien ce qu’on voulait avoir.

Appelons maintenant notre évaluateur sur ce terme afin de vérifier que notre pressentiment

était le bon, et surtout que l’évaluation faite à la main précédemment est bonne. Notre évaluateur

nous fournit : combinateur = APPLIS (APPLIS (S, I), I). Notre évaluateur fonctionne

donc sur ce cas là.

8. Le test base8

Soit +�218 = 89:��. *�;. �� ��,< �= �>

On code alors ce terme dans le type lambda_terme construit, ce qui nous donne :

Figure 13 : arbre de cbase7

Devoir de Programmation Fonctionnelle 2009/2010

 Page
26

#base8 : lambda_terme =
 AP (AP (AB ("x", AB ("w", AP (V "x", V "y"))), V "z"), V "t")

Puis, une fois compilé, nous avons cbase8 tel que :

#cbase8 : combinateur =
 APPLIS
 (APPLIS (APPLIS (APPLIS (B, K), APPLIS (APPLIS (C, I), VS "y")), VS "z"),
 VS "t")

Ce qui provoque la création des deux arbres suivants :

Figure 14 : arbre de base8

Devoir de Programmation Fonctionnelle 2009/2010

 Page
27

Figure 15 : arbre de cbase8

L’évaluation de base8 se fait dans l’ordre suivant. Dans un premier temps, il faut abstraire x

dans le sous arbre composé de λw.(x y). Ainsi, on remplace les occurrences de x par z. On a alors

λw.(z y). Puis, on abstrait le w, or il n’y a aucune occurrence de w. Donc le t est éliminé. Il ne reste

que l’application (z y).

On évalue alors à la main cbase8 afin de bien voir qu’on a la même chose que l’évaluation de

base8. On commence par évalué le B K (C I y) z. On applique la composition, on a alors K (C I y z).

Puis on récupère la variable t. On a alors K (C I y z) t, le K absorbe le t, et retourne donc (C I y z). Le C

de permutation s’applique, on a alors (I z y). L’identité s’effectue. On a alors (z y). Ce qui correspond

bien à l’évaluation base8 compilé.

Devoir de Programmation Fonctionnelle 2009/2010

 Page
28

Notre évaluateur nous renvoie, quant à lui : combinateur = APPLIS (VS "z", VS "y").

C’est bien ce que nous cherchions, donc l’évaluateur est à nouveau fonctionnel sur ce cas là.

Le jeu de test est maintenant terminé, et a montré que notre compilateur donnait les bons

résultats, puisque la compilation, suivi de l’évaluation, a permis d’avoir des résultats cohérents avec

nos attentes. En outre, notre évaluateur est également bon, puisque pour chaque exemple, il

s’accordait avec nos calculs faits à la main.

